Tesla’s growth in China

Following my previous post on electric car batteries’ sluggish development, news just came in that Tesla signed a deal with China’s real-estate developer Soho to expand their car-charging outlets in Beijing.

The deal would comprise a total of 9 charging spots around Soho’s properties in the downtown area of Beijing.

On June 11 2014, Tesla also promised to build 40 more charging points around China (according to an agreement signed with Yantai Holdings).

Now one would wonder, is an increment of 9 charging stations going to make any dent in the development of electric car market? The Chinese government targets to have a goal more than 5 million electric cars by 2020 – that is merely another 15 more years from now.

Adding charging outlets would unequivocally make the switch to an electric car more alluring because it is simply more convenient to travel and recharge your car when you need it. However, considering China’s land mass and the presence of its monolithic rivals Sinopec and CNPC (PetroChina),  it would probably take longer than hoped for to reach a state of energy nirvana.

China is the world’s second-biggest oil consumer and has a growing appetite for oil that may one day surpass that of the U.S. which views Canada’s oil sands as a pillar of its future energy needs. Canada is increasingly looking to China to sell its vast oil reserves after the U.S. delayed a decision on the Keystone XL pipeline that would bring oil from Canada to refineries in the U.S. Gulf Coast.

Quick Trivia

  • Tesla delivered the first model S cars in Shanghai and Beijing in April 2014
  • There are 3 supercharging stations in China, located in Beijing and Shanghai.
  • Superchargers, owned and built by the company, allow Tesla car owners to replenish their battery life as much as 16 times faster than at public charging stations and for free.
  • Norway, which has the highest electric-car ownership per capita, had 4,029 charging points and 127 quick charging stations. They get incentives for owning electric cars such as tax-exemption, free parking, charging and are exempt from road tolls.

References: Bloomberg, facts and details

Advertisements

The slow demise of Li-air batteries for electric cars

Yet another development in the electric car industry: IBM and Joint Center for Energy Storage Research lab (JCESR) funded by US-government announced that they would unwind their research titled “Battery 500 Project” for lithium-air batteries which started back in 2009.

The director of this project, Winfried Wilcke, announced his new-found fondness towards sodium-air batteries instead of lithium-air ones. He believes now that the sodium equivalents would be more economically competitive as compared to the lithium-air ones.

Here’s a table of comparison for the different types of electric car batteries:

 Type Lithium-air batteries (2009) Lithium-ion batteries (1991)

Sodium-air batteries

 What
  • Oxygen interacting with Lithium to generate electricity.
  • Cathodes like cobalt
  • Most common in electric cars
  • Oxygen interacting with Na to generate electricity.
 Pros
  • 500 mph on single charge
  • Cheap carbon cathode
  • Higher energy density than Li-ion and Na-air batteries
  • High energy density
  • Very stable
  • NaO2 formed and decompose into Na, O2 which is reversible process, efficient
  • Na cheaper & more abundant than Li
 Cons
  • Relatively unstable
  • Production of waste product lithium carbonate
  • Added weight and cost due to the need to maintain conditions of the electrodes


  • 100 mph on single charge
  • Expensive metal oxide cathode
  • Energy capacity/storage life depletes after each cycle.
  • Can only recharge approx 10 times.

Batteries Comparison Table ©The Green Plebeian

What happens during battery discharge:

  • The metal (Na or Li) is oxidized at the anode/electrolyte interface, and the resulting electron is transferred to the outer circuit. At the cathode, oxygen is reduced to a superoxide species that may form a metal superoxide in the presence of the oxidized metal.
  • The metal superoxide in a Li-oxygen cell is highly unstable and reacts further.
  • The metal superoxide in a Na-oxygen cell is much more stable and doesn’t decompose further, allowing the reaction to be reversed.

Speaking to an Electrical Engineering friend of mine, I found out that research and development in the clean battery field is still lagging behind other renewables, partly because of the difficulty to make breakthroughs in its limitations. However, with the increasing rate of market expansion of electric cars throughout the world (See post on Tesla), the next generation of highly usable and efficient batteries could be well on its way to revolutionize the automobile industry.