Singapore’s Future in Solar PV

Energy Studies Institute organized a one-day conference which brought together experts from government agencies, research institutes and solar companies on a common discussion topic of the future of Solar PV, internationally, regionally and locally.

The IEA started the day with a comprehensive discourse on the trends in solar energy for the next few decades, outlining the fastest growth in capacity of both solar and wind energy in countries like China, Japan and USA. Outside of Europe and in emerging economies like Africa, there has been significant reduction in cost of capital, allowing speedy expansion of solar. Key elements to success in solar include good financing and PPAs (Power Purchasing Agreements).

The presentation was substantially flavoured with insightful statistics and figures backing up the predictions: Projection of solar energy growth of 400 GWp to 500 GWp by 2020 and 560GWp by 2025 to meet climate change objectives. And with conservative calculations, to reach 16% of energy market in 2025. However, further actions are needed for the estimations to be precipitated. For example, system integration, policy framework and financing as well as government setting aside long-term targets to help finance, distribute and facilitate uptake of solar in a larger scale.

Solar leasing is a crucial way of encouraging the uptake of solar installations. Through shifting of risks and financial burden of capital costs to the lessor, building or house owners have an added incentive to join the game. Not only are the modules financed by investors, lessees get to reap rewards of harvesting solar energy by being green with zero or low cost.

Currently in Singapore, town councils are managing the solar leases with HDB flats and paying for the power generated at lower than retail rate. The latest tender awarded Sunseap with 38MWp for 680 HDB flats and HDB-owned buildings with the cost fully borne by the developers.

The situation in Singapore
Phoenix Solar came in to shatter myths hindering solar developments in Singapore, busting old-aged tales of how intermittency will cause solar power to be unreliable to deploy on national scale. Blessed with plentiful rain throughout the year, intermittency during days of storm can cause intensive drop in aggregate output. However, data showed that the average monthly fluctuation is around 20% which was claimed to be an insignificant cause for worry. Now, installation of solar panels is decentralised and diverse across Singapore, totaling around 9 MWp. It was predicted that solar could contribute up to 2 GWp by 2025 (1/3 of total demand in Singapore) and 600 MWp by 2020, as grid parity has already been achieved ($0.23KWh for solar and $0.21KWh for gas).

Singapore is particularly blessed with government support and efficacy in facilitating the growth of solar industry locally. In countries such as Thailand, hindrances such as lack of government funding, prohibitive rules and inefficacy in pushing out key projects remain as reasons for falling behind. For example, inflexible rules such as the need for a factory license before installing a solar panel with 10KWp capacity occludes solar PV installation on residential roof tops.

The top three PV Success factors include having i) a good business model, ii) cost of equity, debt and construction capital and iii) refinancing and/or exit plans. One of the ways to achieve ii is to get investments. Though solar PV is already traded as a commodity in the markets and repackaged as financial instruments globally, Singapore does not have a large enough pool for securitization. Thus, one of the ideas which sprang up in the conference was to make Singapore a secondary market for the region.

From a regulator’s standpoint, their role was to reduce as much barriers as possible for solar to enter Singapore’s market. Energy Market Authority reduced the number of days from 27 to 7 days to join the power grid locally. It also created a 1-stop PV information sharing website for people to exchange ideas and knowledge. To hedge the problem of solar intermittency affecting stability of power in Singapore, the Intermittent Generation Threshold (IGT) has been set. Basically, this implied the maximum amount of solar energy produced which does not incur additional cost to carry on the existing system. The IGT is now 600MWp (previously 350MWp).

The Future of PV
Due to the unique constraint of land area in Singapore, there needs to be innovations in the usage of solar PV as an energy source. These are already present and are in stages of testing and development, including: floating PV panels (5KWh by Phoenix Solar), using Pulau Semakau as a PV bed as currently they are using diesel to generate power for waste facilities, and Building Integrated PVs (BIPVs) whereby solar panels are placed vertically on buildings like windows. However, some challenges like time-sensitivity of BIPVs and high installation costs remain to be resolved. Without subsidy from government, solar companies need to think of ways to build business models which will thrive in an island with a small land area, in order to propel a faster growth of solar industry here.

Energy capacity and energy parity

According to the ear-pleasing Renewable Power Generation Costs in 2014 report by IRENA, there’re plentiful reasons why anyone in the right mind would be rooting for renewable energy in coming years. Data has irrevocably shown that even without financial aid or incentives, renewables are successful in playing catch-up with costs of traditional fossil fuels. Take some time to chew on these figures:

  • In many countries, including Europe, onshore wind power is one of the most competitive sources of new electricity capacity available. Individual wind projects are consistently delivering electricity for USD 0.05 per kilowatt-hour (kWh) without financial support, compared to a range of USD 0.045 to 0.14/kWh for fossil-fuel power plants
  • The average cost of wind energy ranges from USD 0.06/kWh in China and Asia to USD 0.09/kWh in Africa. North America also has competitive wind projects, with an average cost of USD 0.07/kWh
  • Solar PV module prices have dropped 75% since 2009 and continue to decrease.
  • When damage to human health from fossil fuels in power generation is considered in economic terms, along with the cost of CO2 emissions, the price of fossil fuel-fired power generation rises to between USD 0.07 and 0.19/kWh.

IRENA has also brilliantly came up with a very insightful and easy-to-use online tool displaying statistics and data visualisation on renewable energy usage and ranking by region and countries. Stats junkies can start squealing now. Of note-worthiness are sections on country rankings of installed RE capacity (China of whopping twice the amount of USA) and RE tech employment by country (Why’re UK and US so low on their employment numbers?).



Fun Facts

1. What’s the difference between Solar PV versus Concentrating Solar PV (CSP)?

Answer: CSP refers to solar thermal energy through the use of mirrors or lenses to concentrate a large area of sunlight on a small area.

2. What’s LCOE?

Answer: Levelised cost of electricity, a ratio of lifetime costs to lifetime electricity generation.

COP20 / CMP10 Lima Peru In Summary

The COP20 CMP10 had just ended in Lima, Peru on 12 Dec. I was nominated to join as a youth delegate but was unfortunately unable to attend. However, I’ve heard many things from people about this year’s conference. Quite frankly, whenever it comes to UN conferences on climate change, my skeptical mode switches on. From last few years’ learning from conferences such as the one in Copenhagen, it seemed like all talk, little achievements and no solid conclusions. It has been notoriously known that countries come together not to work in peace and harmony on a coordinated plan to mitigate climate change but rather to pit against each other with their own interests.

What have been agreed

  • US: Committed to cut their emissions (Also first time that the US Secretary of State engaged directly in climate talks, giving a lot of teeth in the negotiations) by shuttering hundreds of coal-fired plants
  • China: Offered to set date of 2030 for peak emissions
  • EU: 40% cut in emissions by 2030 and new targets w.r.t. renewable energy.

What haven’t been agreed

  • No obligation from BRICs to cut emissions, but accepted that world needs a cap as whole
  • Developed countries’ commitment to the emerging economies to assist and provide funds for their carbon-cutting initiatives

The Kyoto Protocol was set in 1997 to engage countries (mostly developed) in the common bid to fix global temperature rise to 2 degree celcius and 350ppm as carbon output level. The commitment will expire on 2020. The 194 countries who attended the Lima conference reached key decisions that will influence the climate change pact for the 2015 Paris conference, and hopefully by 2020 the world shall see the results that it had set out to achieve more than 20 years back.

DNV GL’s Wind-Powered Water Injection Tech

On 10 November, DNV GL gathered in Norway for a launch meeting on their industry project, wind-powered water injection system. In this fairly cosy setting, the industry leaders and experts came together to explore possibilities of expanding this line of business as future development of combining the technologies of water injection and wind energy (in particular, offshore wind). The ultimate goal is ironically, to lower the cost and raise efficiency of extracting oil reserves near the shore. I’m unsure what the environmental offsets to such a technology is. This is clearly a hybrid of both clean technology and traditional one, with the latter being the main driver (and the former as a tool to support this).

DNV GL suggest new EOR concept: wind powered water injection

The main challenge the project seeks is: how to lift the oil off the ground with reduced CO2 emissions and lower cost. I watched the video from DNV GL’s website and learned quite a fair bit about the wind technology portion. Here are some of my takeaways:

Wind is the largest energy source in energy storage capacity. Then, 30% is PV (Solar) and 5% is coal. In China, it is targeted to increase to 200 Gigawatt by 2020. The technology now is gearing towards floating wind turbines. However, the dominating one is still onshore wind which stands about 85% now. Offshore taking about 10-15% of the pie.

Offshore wind turbines can generate about 3 times the energy of onshore ones. The benefits of offshore ones are that bigger components can be used. There are 3 types of offshore turbines: 3 MW, 3.6MW and 5MW with tripods.

The focus is increasingly on floating offshore turbines as opposed to fixed offshore ones. Floating offshore turbines are made of stronger materials and can go deeper into the waters, allowing for bigger blades, higher capacities. Prototypes of floating offshore turbines are already installed in various countries like Norway (forefront), Scotland, Spain France and Portugal. USA and Japan as well. Japan is slightly special due to Fukushima incident and loss of major nuclear plant. 7MW turbines were since installed there.

It was difficult to perform a cost analysis on this new technology. Questions were mostly centered on how much cost savings it can achieve. There are also other things to consider such as regulatory requirements and commercial frameworks (buying equipment vs renting), system reliability and uptime.

Singapore removes cap for solar energy supply to grid

Great news for solar! The energy authority decided to remove the 600 megawatt-peak (MWp) cap of solar energy that can be supplied to our national grid.

Why was there a cap in the first place?

  • Softens the impact on the grid in case of unpredictable reduction in solar supply caused by factors such as cloud covers.
  • Reduces the reliance on reserve powers.

Why are they removing it now?

To encourage more generation of solar energy in the Singapore energy market.

What are the impacts?

  • For companies, there may be added costs due to the need for increased reserve capacity
  • Smaller consumers who install solar generation sources will find it easier to be paid for supplying excess electricity they sell to the national grid.
  • Come 2015, consumers can be paid the energy cost of electricity they export into the grid, currently, 25.68cents per KWh directly through SP.

What proportion is the solar energy output in the overall scheme?

  • The total power generation capacity is 10,000 MW which is more than the peak electricity demand of 6,000 MW.
  • Solar output would then be around 10% of total.
  • In Singapore, the only intermittent energy source connected to the national grid is solar. 85% of the energy it uses is generated through natural gas.

Sources: ChannelNewsAsia, abc carbon, pacific light

Turning ordinary waste into jet fuel

Here’s a cool interview with the UK Institution of Mechanical Engineers on the process of converting landfill waste into usable jet fuel I caught on BBC radio.

What is this process? Why do we want to do this?

Processing landfill waste into green fuel. The resulting fuel is a good quality one and is better than conventional jet fuel. This green fuel can be easily blended into existing fuel so it is straightforward in the pov of the engines. This will help in a reduction in landfill and greenhouse gas emissions.


The raw materials coming in is not controlled. One day there could be a lot and the next you might not get the equal amount. The inputs are variable and stuff in there may be contaminated.

What is the process?     

The main process is called the Fischer-Tropsch.

First – High Plasma Gasification. Breaking down rubbish into simple molecules.

Second – Clean the gas (one of the most important steps). Free the gas from harmful trace materials.

Third – Build up the small molecules to large again. Chemical synthesis to make it into well-defined product.

Is any type of waste usable? 

Glass, sand, metals are removed. Only the organic part goes in. Plastics, paper, food waste are ok.

This is dependent on the taxation regime and the need for carbon taxes to subsidize what they do. There are huge taxation being put on landfill, emissions trading scheme, carbon target. And incentives to do things like not throwing away waste and filling landfills. But it depends on the taxation regime and the need to subsidize what they do.

The Fisher-Tropsch process, started in 1930s, was originally was intended to turn coal into liquids, then gas into liquids. Now waste is being made into liquids.

What’s the difference between waste and biomass?

Waste is in smaller quantities.

How much fuel can be produced?

A typical plant produces half million tonnes waste a year, which converts to 100,000 tonnes of fuel: half jet fuel, half diesel.

The Fisher-Tropsch process started in the 1930s but did not catch on. Is there any new tech now to make the process more efficient?

Most of the inefficiency comes at the beginning. About 2000 tonnes of waste is blasted through the plasma per day. A lot of energy is needed – approx. 12 megawatts of plasma needed to combust the waste initially. You put in 1/3 electricity that you get produced at the end.

Does it make economic sense?

There are internal processes that can recycle the energy that is created to power back into the gasification process. The idea is to squeeze the most valuable output out of the waste. There aren’t many alternative ways. In order to get a sustainable jet fuel, it has to be good quality. You need to accept certain energy loss on the way to achieve that goal.

Isn’t it just displacement of CO2? The energy you use has to come from somewhere else, what if it’s from a coal-burning electricity plant? 

No, it is a sustainable process.

Is there any waste from the process?

There’s not a lot left. That’s a small percent of about 1-2% of the 2000 tonnes a day coming in. The key bit is, it’s a complex process. It produces 1% of British Airways demand for jet fuel. 99% are not using it. We need to do these to get it up 2-3%. 1% of one airline is not going to make a lot of difference.


Once the concept is proven it can be rolled out on a larger scale, a higher impact can be made. Cities produce rubbish and cities need airports — this is a natural connection. Hopefully more cities will adopt this process and make it more sustainable.

Tesla’s growth in China

Following my previous post on electric car batteries’ sluggish development, news just came in that Tesla signed a deal with China’s real-estate developer Soho to expand their car-charging outlets in Beijing.

The deal would comprise a total of 9 charging spots around Soho’s properties in the downtown area of Beijing.

On June 11 2014, Tesla also promised to build 40 more charging points around China (according to an agreement signed with Yantai Holdings).

Now one would wonder, is an increment of 9 charging stations going to make any dent in the development of electric car market? The Chinese government targets to have a goal more than 5 million electric cars by 2020 – that is merely another 15 more years from now.

Adding charging outlets would unequivocally make the switch to an electric car more alluring because it is simply more convenient to travel and recharge your car when you need it. However, considering China’s land mass and the presence of its monolithic rivals Sinopec and CNPC (PetroChina),  it would probably take longer than hoped for to reach a state of energy nirvana.

China is the world’s second-biggest oil consumer and has a growing appetite for oil that may one day surpass that of the U.S. which views Canada’s oil sands as a pillar of its future energy needs. Canada is increasingly looking to China to sell its vast oil reserves after the U.S. delayed a decision on the Keystone XL pipeline that would bring oil from Canada to refineries in the U.S. Gulf Coast.

Quick Trivia

  • Tesla delivered the first model S cars in Shanghai and Beijing in April 2014
  • There are 3 supercharging stations in China, located in Beijing and Shanghai.
  • Superchargers, owned and built by the company, allow Tesla car owners to replenish their battery life as much as 16 times faster than at public charging stations and for free.
  • Norway, which has the highest electric-car ownership per capita, had 4,029 charging points and 127 quick charging stations. They get incentives for owning electric cars such as tax-exemption, free parking, charging and are exempt from road tolls.

References: Bloomberg, facts and details

Obama’s Climate Bill – Cutting Coal 30% by 2050

Cheer-worthy news: for the first time in history, an American president is showing care (to some extent) about the environment.  Mr Obama announced a new environmental regulation to reduce overall carbon emissions by a whopping 30% by 2030.

Apparently, they are already a third of their way towards meeting the goal of 30% cut.

However, the amount of coal reduction that each state would need to achieve varies. EPA made a fantastic virtual interactive map of where power plants reside and the detailed analysis + breakdown of the current and targeted emissions levels. For a table of states and their proposed levels of reduction click here. States such as West Virginia would be subjected to a smaller percentage cut of less than 20% while states like Washington would be 70%. Each state’s luck depends on how energy dependent they are on coal and how ready they are for the switch.

Again, for your ease of info-digesting and for those lazy to read chunks of words such as yours truly, here are some breakdown of the pros and cons of this new regulation. FYI – For your crunching. Not to be accepted as hard facts.


  • Create an energy crisis and lead to power shortages
  • Inflate electricity prices
  • Job losses


  • Lower medical bills and fewer trips to the emergency rooms, especially for kids with asthma, the elderly and infirm.
  • Environmental justice- lower-income families and communities of color are hardest-hit by climate change
  • Reduce smog and soot, avoiding premature deaths from heart attacks and lung disease.
  • Energy efficiency leading to lower cost, greater competitiveness.
  • More jobs would be created in the deployment of clean energy usage.


  • There is no regulation or cap as to the amount of CO2 that can be allowed in the atmosphere at the moment in America.
  • Power plants are the largest source of pollution, contributing roughly about 40% of greenhouse gas emissions.
  • 1600 power plants, 600 of which are coal-powered.

To help ease the process of transition, the kind EPA provided a few broad solutions for power companies panicking at the moment:

1) switching from coal to cleaner-burning natural gas

2) forming cap-and-trade markets

3) expanding renewables such as wind and solar power

4) encouraging customers to use less energy by moving to more efficient heating and cooling systems and appliances

Basically, no matter what you do, you have to comply with it.

Of course, the country is divided on this new law as to whether it is a boon or bane to the future. Taking into account the amount of time that Obama is giving heavily-polluting companies to wake up and respond, I would say it’s a fairly generous move. Plus, they get 10 years between 2020 and 2030 to meet that goal. In total, they have about 15 years to think about how to rectify any reckless polluting behaviours. Sweet.

Sources: Guardian, Climate Progress, Vox, EPA 

The slow demise of Li-air batteries for electric cars

Yet another development in the electric car industry: IBM and Joint Center for Energy Storage Research lab (JCESR) funded by US-government announced that they would unwind their research titled “Battery 500 Project” for lithium-air batteries which started back in 2009.

The director of this project, Winfried Wilcke, announced his new-found fondness towards sodium-air batteries instead of lithium-air ones. He believes now that the sodium equivalents would be more economically competitive as compared to the lithium-air ones.

Here’s a table of comparison for the different types of electric car batteries:

 Type Lithium-air batteries (2009) Lithium-ion batteries (1991)

Sodium-air batteries

  • Oxygen interacting with Lithium to generate electricity.
  • Cathodes like cobalt
  • Most common in electric cars
  • Oxygen interacting with Na to generate electricity.
  • 500 mph on single charge
  • Cheap carbon cathode
  • Higher energy density than Li-ion and Na-air batteries
  • High energy density
  • Very stable
  • NaO2 formed and decompose into Na, O2 which is reversible process, efficient
  • Na cheaper & more abundant than Li
  • Relatively unstable
  • Production of waste product lithium carbonate
  • Added weight and cost due to the need to maintain conditions of the electrodes

  • 100 mph on single charge
  • Expensive metal oxide cathode
  • Energy capacity/storage life depletes after each cycle.
  • Can only recharge approx 10 times.

Batteries Comparison Table ©The Green Plebeian

What happens during battery discharge:

  • The metal (Na or Li) is oxidized at the anode/electrolyte interface, and the resulting electron is transferred to the outer circuit. At the cathode, oxygen is reduced to a superoxide species that may form a metal superoxide in the presence of the oxidized metal.
  • The metal superoxide in a Li-oxygen cell is highly unstable and reacts further.
  • The metal superoxide in a Na-oxygen cell is much more stable and doesn’t decompose further, allowing the reaction to be reversed.

Speaking to an Electrical Engineering friend of mine, I found out that research and development in the clean battery field is still lagging behind other renewables, partly because of the difficulty to make breakthroughs in its limitations. However, with the increasing rate of market expansion of electric cars throughout the world (See post on Tesla), the next generation of highly usable and efficient batteries could be well on its way to revolutionize the automobile industry.

Solar Powered Roads: A Hoax or Panacea?

Solar Roads are all the rage on the internet now. This couple Julie and Scott from America started a company called Solar Roadways a few years back. They recently turned to indiegogo and got a whopping USD$1.8 million worth of support from plebeians who were equally hyped about their promise to save the world.

I came to awareness of this “tech” first from a friend who posted on facebook, boasting its prowess in making a real difference and even potentially considering working for it in the future. So I got curious and went to check it out. Their indiegogo campaign video “solar freakin roadways” was an excellent marketing feat. It made my heart race, blood accelerate and pupils dilate 10 times larger. As a first-time viewer, I was equally pumped about the idea of saving the world, ending global warming, generating new jobs and rescuing the failing economy – all these just by having solar road ways.

But aside from the incredible media and public attention it attracted, I started noticing that there was no indepth mentioning of the technical feasibility in terms of cost, scalability or implementation of the project. Their pitch for the $1m call was this:

“We asked for $1 million to hire an initial team of engineers to help us make a few needed tweaks in our product and streamline our process so that we could go from prototype to production.”

There was hardly much scientific backup of why this would be a better alternative to the existing solar panels that we see fixed on roof tops, desserts and other open spaces. They claim their version of solar panel to be “smart, micropocessing, interlocking, hexagonal” solar panels. After given $750,000 fund from the Federal Highway Administration back in 2011, all they came up with was a small parking lot prototype.

What about the cost of digging up old roads, putting in the new solar ones and connecting all of the million highways and roads together? How do they transmit the electricity generated from sun to actually power houses or buildings? What exactly is the advantage of these over existing solar systems? If the main goal of the roads is to harness solar power, wouldn’t it make more sense to just build solar panels on totally unobstructed surfaces rather than roads where cars would be overshadowing the panels?

So they tried addressing some of the questions in their FAQ, such as:

How much will your panels cost?

We are not yet able to give numbers on cost. We are still in the midst of our Phase II contract with the Federal Highway Administration and we’ll be analyzing our prototype costs near the end of our contract which ends in July, 2014. Afterward, we’ll be able to do a production-style cost analysis.

If a parking lot is full of cars or a highway has lots of traffic, how are they going to produce any energy?

Traffic jam

This picture is from Orange County, CA during work traffic. The upper six lanes are what we’d refer to as “bumper to bumper” traffic. Even with this congestion, you can see how much of the road surface is still exposed to sunlight. As we travel around the country doing speaking engagements, we see miles and miles of roads and highways with virtually no traffic. So we believe it will have a negligible impact on the Solar Roadway’s overall efficiency.

Sure, but…What if it was this instead?

So essentially, the couple is counting on random piecemeal shots from Google Earth to tell us that there wouldn’t be problem with collecting enough energy to offset the high installation costs, because there will not be much traffic as depicted from this photo. Very dubious-sounding evidence. Sounds more like a dire need to learn the art of data research and analysis to make a more cogent argument. Up to now, it is all talk and little proof. I await their analysis report in the near future and hopefully, their backers would not be disappointed with their investments and that this idea would actually be one that works.